

UNIVERSITY OF

$Tropical \ Abstractions \ of Max-Plus-Linear \ Systems$

Muhammad Syifa'ul Mufid¹, Dieky Adzkiya², Alessandro Abate¹ ¹Department of Computer Science, University of Oxford, UK muhammad.syifaul.mufid@cs.ox.ac.uk, alessandro.abate@cs.ox.ac.uk

²Department of Mathematics, Institut Teknologi Sepuluh Nopember Surabaya, Indonesia dieky@matematika.its.ac.id

1. Introduction

- The goal of this research is to generate the abstractions of Max-Plus-Linear (MPL) systems using tropical operations.
- Tropical operations are defined over $\mathbb{R}_{\max} = \mathbb{R} \cup \{\varepsilon := -\infty\},\$

 $a \oplus b := \max\{a, b\}$ and $a \otimes b := a + b, \forall a, b \in \mathbb{R}_{\max}$

- The algebraic structure $(\mathbb{R}_{\max}, \oplus, \otimes)$ is well known as max-plus algebra (or tropical algebra).
- Inspired by the fact that an MPL system is a discrete-event model updating its state with operations in the tropical algebra.
- An autonomous MPL system is defined as $\mathbf{x}(k+1) = A \otimes x(k)$ where $A \in \mathbb{R}_{\max}^{n \times n}$ and $\mathbf{x}(k) \in \mathbb{R}^n$.

4. Numerical Benchmark

- Tropical abstractions versus VeriSiMPL 1.4 [2].
- For increasing n, we generate matrices $A \in \mathbb{R}_{\max}^{n \times n}$ with two finite elements in each row, with value ranging between 1 and 100.

Table 1: Generation of abstract states and transitions over 10 independent experiments. Each entry represents the average running time.

	VeriSiMPL 1.4.		Tropical	
	time for	time for	time for	time for
n	generating	generating	generating	generating
	abstract states	transitions	abstract states	transitions
3	$7.51 \mathrm{\ ms}$	$0.13 \mathrm{sec}$	$4.04 \mathrm{\ ms}$	$0.12 \sec$
4	$11.29 \mathrm{\ ms}$	$0.20 \sec$	$5.23 \mathrm{\ ms}$	$0.17 \mathrm{sec}$
5	$18.51 \mathrm{ms}$	0.20 sec	$5.16 \mathrm{ms}$	0.19 sec
6	49.22 ms	0.21 sec	9.99 ms	0.20 sec
7	90.88 ms	0.24 sec	$15.88 \mathrm{\ ms}$	$0.22 \mathrm{sec}$
8	0.21 sec	$0.32 \sec$	0.04 sec	$0.27 \mathrm{sec}$
9	$0.52 \sec$	$0.72 \sec$	0.07 sec	0.60 sec
10	1.25 sec	2.62 sec	0.14 sec	2.38 sec
11	3.87 sec	$17.62 \sec$	$0.35 \sec$	17.17 sec
12	8.34 sec	1.20 min	0.61 sec	1.10 min
13	26.17 sec	$5.05 \min$	1.21 sec	4.98 min
14	1.81 min	41.14 min	0.06 min	40.61 min
15	10.29 min	2.63 hr	0.11 min	2.57 hr

Figure 1: The framework of MPL system abstraction

- Abstraction of MPL system is PWA (Piecewise-Affine) system.
- PWA region is formulated as

$$R_g = \bigcap_{i=1}^n \bigcap_{j=1}^n \{ \mathbf{x} \in \mathbb{R}^n | x_{g_i} - x_j \ge A(i,j) - A(i,g_i) \}$$

where $g \in \{1, \ldots, n\}^n$ such that $A(i, g_i) \neq \varepsilon$ for all $1 \leq i \leq n$.

- R_g is a Difference-Bound Matrix (DBM).
- The corresponding affine dynamic is $\mathbf{x}' = A_g \otimes \mathbf{x}$ if $\mathbf{x} \in R_g$ where $A_g(i,j) = A(i,j)$ if $g_i = j$, and ε otherwise.
- Abstract states are defined as non-empty R_g after refinement.
- $\operatorname{Im}(R_g) = \{A_g \otimes \mathbf{x} \mid \mathbf{x} \in R_g\}$ and its dual $\operatorname{Inv}(R_g) = \{\mathbf{x} \mid A_g \otimes \mathbf{x} \in R_g\}.$

3. Tropical Abstractions of MPL systems

Difference-Bound Matrices

A DBM in \mathbb{R}^n is the intersection of sets defined by $x_i - x_j \sim_{i,j} d_{i,j}$, where $\sim_{i,j} \in \{>, \geq\}$ and $d_{i,j} \in \mathbb{R} \cup \{-\infty\}$ for $0 \leq i, j \leq n$. The variable x_0 is set to be equal to 0.

- Each DBM can be expressed as a pair of matrices (D, S).
- The element D(i, j) stores the bound variable $d_{i,j}$.

5. Extensions

- Extension to non-autonomous MPL systems with dynamics that are characterised by non-square tropical matrices.
- Extension to predicate abstractions of MPL systems.
- Extension to other systems e.g. Min-Plus-Linear systems, Min-Max-Plus systems.

References

- F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and linearity: an algebra for discrete event systems. John Wiley & Sons Ltd, 1992.
- [2] D. Adzkiya and A. Abate. VeriSiMPL: Verification via biSimulations of MPL models. In Proc. 10th International Conference on
- S represents the sign matrix of the operator i.e. S(i,j) = 1 if $\sim_{i,j} = \geq$ and 0 otherwise.

Results

- Generating abstract states: $R_g = A_g^{\mathsf{c}} \otimes A \oplus I_n$. $A^{\mathsf{c}}(i,j) = -A(j,i)$ if $A(i,j) \neq \varepsilon$, and ε otherwise.
- Computing the image and inverse image of DBMs:
 - $\mathsf{Im}(D) = A_g^{\mathsf{c}} \otimes D \otimes A_g \text{ and } \mathsf{Inv}(D) = A_g \otimes D \otimes A_g^{\mathsf{c}}$
- DBM operations:

Intersection: $D_1 \cap D_2 \equiv D_1 \oplus D_2$. Canonical-form: $cf(D) = \bigoplus_{m=0}^{n+1} D^{\otimes m}$. Quantitative Evaluation of Systems (QEST'13), 2013.

[3] D. Adzkiya, B. De Schutter, and A. Abate. Finite abstractions of max-plus-linear systems. *IEEE Transactions on Automatic Control*, 58(12):3039-3053, 2013.

